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Abstract

Sign language recognition is a challenging gesture se-
quence recognition problem, characterized by quick and
highly coarticulated motion. In this paper we focus on
recognition of fingerspelling sequences in American Sign
Language (ASL) videos collected in the wild, mainly from
YouTube and Deaf social media. Most previous work on
sign language recognition has focused on controlled set-
tings where the data is recorded in a studio environment
and the number of signers is limited. A common recogni-
tion pipeline consists of hand detection, sometimes hand
segmentation, followed by recognition of handshape se-
quences. This work aims to address the challenges of real-
life data, while avoiding the need for supervised detection
or segmentation modules. We propose an end-to-end model
based on a neural attention mechanism, without hand de-
tection or segmentation. We develop a new approach for
obtaining high-resolution regions of interest, which outper-
forms prior work by a large margin. In addition, we show
that performance can be improved by collecting crowd-
sourced annotations of fingerspelling videos.

1. Introduction

did a bunch of editing –KL Automatic recognition of
sign language has the potential to overcome communica-
tion barriers for deaf and hearing-impaired people. With
the increased use of online media, sign language video-
based websites (e.g., deafvideo.tv) are increasingly used as
a platform for communication and media creation. Sign lan-
guage recognition could also enable web services like con-
tent search and retrieval in such media.

From a computer vision perspective, sign language
recognition is a complex gesture recognition problem, in-
volving quick and fine-grained motion, especially in realis-
tic visual conditions. It is also relatively understudied, with
little existing data in natural day-to-day conditions.

In this paper, we study the problem of American Sign

Figure 1. The ASL fingerspelling alphabet, reproduced from [11]

Language (ASL) fingerspelling recognition from naturally
occurring sign language videos collected from web sites.
Fingerspelling is a component of ASL where each letter
has a canonical sign and words are signed out letter by let-
ter (see Figure 1). Words are fingerspelled when they do
not have their own ASL signs, for example technical items
or proper nouns. Overall fingerspelling accounts for 12 to
35% [21] of ASL and is used frequently for content words
in technical conversations and conversations involving cur-
rent events. Specifically in deaf online media, fingerspelling
recognition is crucial as it often contains high a proportion
of such content words.

please check next par for repeated language from prev
papers –KL Compared to sign language recognition in gen-
eral, fingerspelling recognition involves a limited set of
handshapes and is produced with a single hand (in ASL). On
the other hand, fingerspelling recognition presents its own
challenges. It involves very quick, small motions that can
be highly coarticulated. In lower-quality video, motion blur
can be very significant during fingerspelled portions. Fur-
thermore, there exists high ambiguity among fingerspelled
handshapes, especially for data “in the wild” (see Figure 2).

add some citations to this par (can grab a few represen-
tative ones from the related work section) –KL Automatic
sign language recognition is commonly addressed with ap-
proaches borrowed from computer vision and speech recog-
nition. The “front end” of the pipeline often consists of
hand detection and sometimes segmentation, as well as vi-
sual feature extraction. Extracted features are then passed
through a sequence model, similar to ones used in speech
recognition.

Most prior work on sign language recognition has fo-
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Figure 2. Illustrations of ambiguity in fingerspelled handshapes.
Upper row: different letters with similar handshapes, all pro-
duced by the same signer. Lower row: the same letter (u) signed
by different signers. replace images in this fig, maybe add “m”.
also try to get this fig onto the 1st page –KL

cused on data collected in a controlled environment. Figure
3 shows example images of fingerspelling data collected “in
the wild” in comparison to a studio environment. Compared
to studio data, naturally occurring fingerspelling images of-
ten involve more complex visual context and more motion
blur, especially in the signing hand regions. Thus hand de-
tection, an essential pre-processing step in the recognition
pipeline, becomes more challenging.

We propose an approach for fingerspelling recognition
that does not rely on hand detection. We make several con-
tributions: (1) We propose an attention-based fingerspelling
recognition model that can be trained end-to-end from raw
image frames qualify this by mentioning face detector for
scaling? –KL (2) We propose a new approach, iterative
attention, for obtaining regions of interest of high resolu-
tion with limited computation. Our model trained with it-
erative attention achieves higher accuracy than the previous
best approach [24], which required a custom hand detec-
tor. (3) We address the lack of data by collecting a data set
of crowdsourced fingerspelling video annotations, in con-
trast with previous work using smaller carefully curated
data sets, and showing that performance can be improved
using this data set. We make our data set publicly avail-
able.1

2. Related Work
include related work on action recognition, gesture

recognition, hand tracking? probably also need a few
more sign language recognition citations for completeness
(copy from SLT paper) –KL In general, conversion between
signed and spoken languages is a translation problem, since
sign languages each have their own lexica and syntax that
are not necessarily aligned to those of any spoken lan-
guage, and some recent work has begun to look at this prob-
lem [19]. However, the majority of prior work on sign lan-
guage involves more constrained tasks, such as recognition
of individual signs or fingerspelling recognition. In this pa-

1Link to be provided upon paper acceptance.

Figure 3. Fingerspelling images in the wild vs. in studio data.
Top: four example fingerspelling frames from our data set (see
Section 4. Bottom: An example fingerspelling frame from studio
data []. the bottom image is disproportionately big. could make
this a 2-column fig with all 5 frames in a row. –KL

per we consider a constrained task (fingerspelling recogni-
tion), but loosen the visual and stylistic constraints in most
previous work.

Early work on sign language recognition from video
mainly focused on isolated signs [5, 3].2 More recent
work has focused on continuous sign language recogni-
tion and data sets [10, 7, 12]. Specifically for finger-
spelling, the ChicagoFSVid data set includes 2400 finger-
spelling sequences from 4 native ASL signers. The RWTH-
PHOENIX-Weather Corpus [7] I added the citation but not
sure whether [10] or [7] is correct –KL is a realistic data
set of German Sign Language, consisting of sign language
videos from 190 television weather forecasts. However, its
visual variability is still fairly controlled (e.g. uniform back-
ground, consistent video frame rate) and it contains a small
number of signers (9 signers) signing in a fairly formal style
appropriate for weather broadcasts. The recently introduced

2There has also been significant work on sign language recognition us-
ing specialized equipment such as depth sensors (e.g., [22, 9]). In this
paper we consider video-only input, as it is more practical and abundant in
naturally occurring online data.

2
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Chicago-Fingerspelling-in-the-Wild (ChicagoFSWild) data
set [24] consists of 7304 fingerspelling sequences from on-
line videos. This data set includes a large number of signers
(168) and a wide variety of challenging visual conditions,
and we use it as one of our test beds.

Automatic sign language recognition tasks are com-
monly addressed with approaches combining ideas from
computer vision and speech recognition. A variety of sign
language-specific visual features have been proposed in
prior work, including ones based on estimated position and
movement of the hand combined with appearance descrip-
tors.add citations. also, this is for fingerspelling only? for
sign language in general you need more than the hand –KL
Recent work has had more success with convolutional neu-
ral network (CNN)-based features [15, 16, 18, ?, 17, 23, 24].
The visual features are then fed into sequence models such
as hidden Markov models [13, 15, 16, 17]is [17] hmm-
based? –KL, segmental conditional random fields [14, 12],
and recurrent neural networks (RNNs) [23].other rnn-based
citations? –KL In this paper, we focus on end-to-end
sequential models combining convolutional and recurrent
neural layers due to their simplicity and recent success for
fingerspelling recognition [23].

Sign language recognition is also related to pose esti-
mation, more specifically articulated hand pose estimation
for the case of fingerspelling. There has been extensive
work on hand pose estimation, and some models (e.g., [25])
have shown real-life applicability. However, directly ap-
plying hand pose estimation to our real-life fingerspelling
data is very challenging. Fingerspelling consists of quick,
fine-grained movements and often has occlusion, and typ-
ical web-quality video is particularly visually challenging.
Figure 4 shows typical examples of running an off-the-shelf
pose estimation model on video from our data set.

Much previous work on sign language recognition, and
the vast majority of previous work on fingerspelling recog-
nition, uses some form of hand detection or segmentation to
localize the region of interest as an initial step. Kim et al.
[13, 14, 12] estimate a signer-dependent skin color model
based on mixture of Gaussians using manually annotated
hand regions in a small number of frames per signer. Huang
et al. [9] learn a hand detector based on Faster R-CNN []
using manually annotated signing hand bounding boxes,
and apply it to general sign language recognition. Shi et
al. [23] train a custom signing hand detector for finger-
spelling recognition on the ChicagoFSWild data set, which
avoids detecting the non-signing hand during fingerspelling,
and find that this vastly improves performance over a model
based on the whole image. Some sign language recognition
approaches use no hand or pose pre-processing, using the
entire image as input (e.g., [19]), and indeed many signs in-
volve large motions that do not require fine-grained gesture
understanding. However, for fingerspelling recognition it

is particularly important to understand fine-grained distinc-
tions in handshape. edited this par. it seemed to be saying
hand detection doesn’t work on data in the wild, but we did
use it with good effect in the SLT paper –KL

Figure 4. Failure cases of an off-the-shelf hand pose estimator
on fingerspelling images in the dataset. Pose estimation is based
on Openpose [1]. show sequence of frames from each video with
some successes/failures in hand pose estimation. possibly move
this fig to supplementary material. –KL

The most closely related work to ours is that of Shi et
al. [23], which first addressed fingerseplling recognition in
the wild. In contrast to this prior work, we propose an end-
to-end approach that directly transcribes a sequence of im-
age frames into letter sequences, without a dedicated hand
detection step. To our knowledge this is the first attempt
to address the continuous fingerspelling recognition prob-
lem, or any sign language recognition in similarly challeng-
ing visual conditions, without relying on hand detection.not
sure we should mention “or any sign language...” as her-
mann ney et al. might disagree –KL We also contribute the
first attempt at crowd-sourced sign language annotation for
large-scale data collection.

3. Model
In this section we describe our approach for finger-

spelling recognition with two subsections respectively fo-
cused on attention model and the iterative zooming-in ap-
proach.

3.1. Attention-based recurrent neural network

We now describe how to transcribe a signing tube, rep-
resented by a sequence of image patches I1, I2, ..., IT into
the fingerspelled word w. As we deal with the lexicon-free
scenario, in which the lexicon size is unlimited, the word w
is represented as a sequence of letters w1, w2, ..., ws. To ex-
tract the features of image sequence of image sequence, one
possible way is to apply a 2D-CNN on individual frames

3
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and use a recurrent neural network such as LSTM on the
top to incorporate temporal structure or directly apply a 3D-
CNN to get spatial-temporal representation of the frame se-
quence. One potential problem with the above approach is
that the model is not equipped with the mechanism to focus
on the informative part of an image. In our case, most infor-
mation is conveyed by the hand constituting only one part
of the whole image. The capacity to distinguish hand and
background has to be learned implicitly which can be hard
in a setting where only sequence-level labels are available.
This is made worse as we often need to enlarge the hand
bounding boxes to incorporate whole hand. Such issue can
be mitigated by an attention mechanism.

Our attention model is based on convolutional recurrent
architecture (see figure 5). At timestep t, a fully convolu-
tional neural network is applied on the image frame It to
extract a feature map f t. Suppose hidden state of recurrent
unit at timestep t−1 is et−1, we compute the attention map
βt based on f t and et−1:

vtij = vTf tanh(W
det−1 +W ff tij)

βtij =
exp(vtij)∑
i,j

exp(vtij)
(1)

Figure 5. Attention-based recurrent convolutional neural network

Attention map βββt reflects the knowledge learned by the
model on importance of feature at different spatial loca-
tions to the letter sequence. Here we also introduce a
prior term M, which represents prior knowledge we have
on the importance of spatial locations. For instance we
get obtain M by using optical flow as regions in motion
are more likely to be of signing hands compared to the
static regions, most of which are background objects. The
visual feature at timestep t is a weighted average of f tij ,
1 ≤ i ≤ h, 1 ≤ j ≤ w, where w and h are width and

height of the feature map respectively. α controls the rel-
ative weight of prior and attention weights learned by the
model.

ht =

h∑
i=1

w∑
j=1

βtij(M
t
ij)

αf tij
βtij(M

t
ij)

α
(2)

The state of recurrent unit at timestep t is updated as
equation 3.

et = LSTM(et−1, ht) (3)

Once we get the spatial-temporal features for the image
frames, the next step is to decode that sequence into words:
(e1, e2, ..., eT ) → (l1, l2, .., ll). Here we employ connec-
tionist temporal classification (CTC) for decoding, which
does not rely on the frame-letter alignment. More formally,
for an input sequence of visual features e of length T , we
define a continuous map Nw : (Rm)T 7→ (L′)T represen-
tating the transformation from visual feature to frame-level
label and a many-to-one map B : L′

T 7→ L≤T where L≤T

is the set of all possible labelings. Let L′ = L ∪ {blank},
ytk the probability of observing label k at time t, the first
step is to compute the probability of any possible labeling
π ∈ L′T :

p(π|e1:T ) =
T∏
t=1

ytπt
=

T∏
t=1

softmax
πt

(Aeetπt
+ be) (4)

The next step is to compute the probability of a given la-
beling l by summing over all the possible labeling π (equa-
tion 5), which can be computed by CTC forward-backward
algorithm.

p(l|e1:T ) =
∑

π∈B−1(l)

p(π|e1:T ) (5)

In order to efficiently compute p(l|e1:T ), it is assumed
in CTC that network outputs at different timesteps are
conditionally independent given the hidden state at every
timestep and alignment between frame and label is mono-
tone. The first assumption is reasonble in practice given the
enough representation capacity of encoder, which is convo-
lutional recurrent neural network. The monotonicity gener-
ally holds for the case of fingerspelling as the order of frame
and letters are consistent with each other.

3.2. Iterative zooming

As we are under a recognition setting where the input is
a sequence of coarse-grained image frames, signing hand(s)
only constitute a small portion of the whole frame. Atten-
tion mechanism equips the model with capacity to focus on
informative regions, the issue of low resolution in signing

4
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regions persists. This problem is in our recognition setting
as fingerspelling often involves fine-grained motions and
minor difference in handshape. One straightforward way to
mitigate this issue is to enlarge the size of inputting images.
However, as the convolutional recurrent encoder covers the
full image sequence increasing size of whole image can lead
to prohibitively large memory footprints especially for the
training.

To address the problem of low resolution, we propose to
iteratively refine the input image frames based on the atten-
tion map. Given a trained attention modelM, we run infer-
ence step with M on target image sequence I1, I2, ..., IT
to generate the associated sequence of attention maps:
M1,M2, ...,MT . The sequence of attention maps are uti-
lized to get new sequence of images I ′1, I

′
2, ..., I

′
T . At train-

ing time, I ′1, I
′
2, ..., I

′
T are used to train a new model H′.

This iterative process runs S steps until image of sufficiently
high resolution is obtained. Given a series of zooming ratios
r1, r2..., rs, the zooming process consists of finding a se-
ries of bounding box sequences {b1t}1≤t≤T , ..., {bSt }1≤t≤T .
The zooming ratio is defined as ratio between size of bound-
ing box and full frame. How to select the series of ra-
tios will be detailed in experimental section. S models are
trained in the above iteraive process. At test time, input
image sequence I1, I2, ..., IT , H1:S−1 is run subsequently
to get sub-region sequence IS−11 , IS−12 , ..., IS−1T on which
MS are applied for word decoding. The above process is
illustrated in algorithm 1.

In each iteration, the objective is to find a sequence of
bounding boxes {b1, b2, ..., bT } based on attention map se-
quence {M1,M2, ...,MT }. We assign a score sit to each
box bit defined as the its center value in attention map Mi.
We also define a linking score between two bounding boxes
bit in two consecutive frames as equation 6

e(bit, b
j
t+1) = sit + sjt+1 + λ ∗ IoU(bit, b

j
t+1) (6)

, where IoU(bit, b
j
t+1) is the intersection over union of

bit and bjt+1 and λ is a hyperparameter measuring the rela-
tive weight between the box score and smoothness. Using
intersection over union has a smoothing effect and ensures
the framewise bounding box does not shift between differ-
ent hands. Such formulation is analogous to finding “action
tube” in action recognition [8]. Finding the sequence of
best bounding boxes can thus be turned into an optimiza-
tion problem as equation 7, which can be efficiently solved
by a Viterbi-like dynamic programming. Once the zooming
boxes are found, we take average of all boxes for further
smoothing.

E(l) =
1

T

T−1∑
t=1

e(bltt , b
lt+1

t+1 ) (7)

Algorithm 1 Iterative zooming

Training, Input: {(In,01:Tn
,wn)}1≤n≤N

1: for s ∈ {1, 2, ..., S} do
2: Train modelHs with (In,s−11:Tn

,wn)1≤n≤N
3: for n = 1, ...N do
4: Run inference on In1:Tn

withHs to obtain atten-
tion map Mn

1:Tn

5: Solve equation 7 to obtain sequence of bound-
ing boxes bn1:Tn

6: Crop and resize In,01:Tn
with bn1:Tn

to get In,s1:Tn

7: end for
8: end for
9: ReturnHs, 1 ≤ s ≤ S

Test, Input: I01:T
10: for s ∈ {1, 2, ..., S} do
11: Run inference on Is−11:T with Hs to obtain attention

map M1:T and predicted words ws

12: Solve equation 7 to obtain sequence of bounding
boxes b1:T

13: Crop and resize I01:T with b1:T to get Is1:T
14: end for
15: if Ensemble then
16: Return wS

17: else
18: Return Ensemble(wS−k, ...,wS)
19: end if

Figure 6. Illustration of finding zoomed-in ROI sequence based
on attention maps in one iteration. remove the diagonal line con-
necting image corners –KL

Throughout this paper, we pre-set ratio between size of
bounding box and the input image frame in each iteration.
Tuning the “zooming ratio” and number of iterations will
be detailed in experimental section. Overall in the iterative
approach, a total of S models are trained and S − 1 mod-
els are used for the purpose of generating images of high
resolution and model trained in last iteration is for word de-
coding. One can also ensemble models in several iterations
for testing.

5
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4. Data
I split off the data section from the expts section since

it is a contribution, and also added some more info about
the mturk collection –KL We use two data sets: Chicago
Fingerspelling in the Wild (ChicagoFSWild) [24], a previ-
ously existing data set; and our newly collected data set with
crowdsourced annotations, FSWildCrowd. Both data sets
contain clips of fingerspelling sequences excised from sign
language video “in the wild”, collected from online sources
such as YouTube and deafvideo.tv. However, ChicagoF-
SWild was carefully annotated by linguistics students, while
FSWildCrowd uses crowdsourced annotations. ChicagoF-
SWild contains 5455 training sequences from 87 signers,
981 development sequences from 37 signers, and 868 test
sequences from 36 signers, with no overlap in signers in the
training/development/test sets.3

One goal of our work is to enable quicker data collec-
tion for sign language research. To this end, we have de-
veloped a fingerspelling video annotation interface, based
on VATIC [?],show vatic screenshot? –KL and have used
it to collect our new data set, FSWildCrowd, by crowd-
sourcing the annotation process via Amazon Mechanical
Turk [?]. Annotators are presented with one-minute clips
from sign language videos, and are asked to mark the start
and end frame of fingerspelling sequences within the clips
(if any fingerspelling is present). Annotators also provide a
transcription (a sequence of English letters) for each finger-
spelling sequence, but do not align the transcribed letters to
video frames. Two annotators are used for each clip, and
both annotations are included in FSWildCrowd. No post-
processing or cleanup of the annotated data is done.is the
last sentence true? are we using any of the proofread data? –
KL Compared to ChicagoFSWild, therefore, less researcher
effort is put into collection, annotation, and proofreading in
FSWildCrowd.

The videos in FSWildCrowd include sources such as we-
bcam videos and online lectures, and include varied view-
points and styles. [More description and statistics on the
MTurk data] yes please –KL

FSWildCrowd includes 24,086 training sequences from
122 signers, 4025 development sequences from 22 sign-
ers, and 1715 test sequences from 22 signers. The split
into training, development, and test sets has been done in
such a way as to approximately evenly distribute certain at-
tributes (such as signer gender and handedness) between the
three sets. In addition, order to enable clean comparisons
between results on ChicagoFSWild and FSWildCrowd, we
used the signer labels in the two data sets to ensure that
there are no overlaps in signers between the ChicagoFSWild
training set and the FSWildCrowd test set.please check my

3According to [24], the signer identities were determined manually, so
could potentially include overlaps due to mistaken identity. We follow the
same procedure here.

edits –KL

5. Experimental Setup
In this section we describe the data we use, experimental

results and analysis on our approach. Note all experiments
are done in signer-independent setting.

5.1. Implementation Details

Preprocessing The objective of image pre-processing
here is to roughly unify the scale of hands in different in-
put sequences. As our data are from videos with a large
variety of viewpoints, the scale of hands of vary in a wide
range across different input sequences. For instance pro-
portion of hand in an image from a webcam video can be
several times larger than that in an image of third-person
view. As a preprocessing step, we first run an off-the-shelf
face detector on image frames to obtain the face bounding
box and rescale image according to the size of the bounding
box to ensure hand scale consistent in every sequence.

Our face detection is based on the implementation [2],
which is trained on WIDER dataset [27]. To save computa-
tion we run face detector on one in every five frames in each
sequence. We then take the average of all bounding box for
the whole sequence. In cases when multiple faces are de-
tected, we first find a smooth “face tube” by successively
taking the bounding box in next frame which has highest
IoU with the face bounding box in current frame. For ev-
ery tube, a motionness score is defined as the average value
of a surrounding region (3× size of bounding box) in the
optical flow, which are calculated based on two-frame mo-
tion estimation algorithm by Farneback [6]. Finally the tube
with highest score is selected and again the box is averaged
for the whole sequence. In cases where face detection fails,
we use the mean of all face bounding boxes detected in all
images of same size in the training set. We empirically ob-
serve the failure case (no face detected) is rare (≈ 0.5% in
training set).

With detected face bounding box for an input sequence,
we experiment on two setups with different input: (1) face-
based ROI (2) whole frame. In first case, a large region cen-
tered on the detected face is cropped and resized to serve
as input. Particularly in case of fingerspelling (and general
sign language), the signing hand(s) are spatially close to the
face. Cropping the signing region given face bounding box
can gives a good initialization to the input of our approach.
Specifically we crop a region centered on the bounding box
which is of size 3 times larger. The ROI is resized with
a ratio of 224

max(wroi,hroi)
and then padded on short side to

make a squared target image of size 224 × 224. In latter
type, we input the whole image frame with consistent scale
of face. The objective is to remove any artifact aroused by
cropping in preprocessing steps. As the image size and its
associated bounding boxes are scattered in very wide range,
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we unify the scale in two-step manner. Specifically we set
a base size (wb, hb) for bounding box and a maximum size
(Wmax, Hmax) for image. Input image (WI × HI ) with
a bounding box of size wI × hI are rescaled with a ratio
of max(wI ,hI)

(wb,hb)
. If the size of rescaled image is larger than

Wmax × Hmax we further resized the input image by ra-
tio of α so that the area of resulting image is smaller than
Wmax ×Hmax. α is multiplied in the iterative zooming-in
process for that input sequence. Note input images can be
of different sizes under this setup. [Some explanations on
this two-step rescaling].

Model training We base convolutional layers of our
model on AlexNet[20] pre-trained on ImageNet[4]. The last
max-pooling layer of AlexNet is also removed so that we
have a sufficiently large feature map. When input of size
224 × 224, the extracted feature map is of size 13 × 13. A
deeper network like VGG [26] cannot be used due to the
memory requirements introduced by its small stride. To
prevent over-fitting, we added 2D-dropout layers between
last three convolutional layers with drop rate being 0.2 in
each layer. For recurrent neural network, we used one-layer
LSTM with 512 hidden units. The model is trained with
SGD at initial learning rate of 0.01 for 20 epochs and a de-
cayed learning rate of 0.001 for additional 10 epochs. We
use dev set for early stopping.

For iterative zooming, we select the zooming ratio
based on beam search. Zooming ratio are selected from
{0.9, 0.81, 0.729, 0.6561} (the power of 0.9) for each itera-
tion and beam size is 2. To prevent over-tuning, we use the
dev set of MTurk dataset for choosing the series of zoom-
ing ratio. In viterbi decoding (equation 7), λ is tuned to be
0.1. We select among 2 candidate bounding boxes at each
timestep, mainly for sake of preventing switchingbetween
two hands in neighboring frames.

6. Results and Analysis

6.1. Main Results

inhouse test MTurk test
[24], unscaled whole 12.7

[24], scaled whole
[24], hand 41.9 41.2
Ours, face 44.2 46.8

Ours, scaled whole 41.5
Table 1. Comparison of letter accuracies (%) between our ap-
proach and previous work. Unscaled whole: whole frame as input.
Scaled whole: whole frame scaled with face detection as input.
Hand: signing hand as input. Face: an enlarged region surround-
ing face bounding box as input

Table 1 shows the main results of our approach on two
different inputs as well as the results of prior work [24].

Compared to the prior work, we achieve better and compa-
rable performance under face ROI and whole frame setting
without using hand detection based on manually annotated
hands on the dataset. Though using high-resolution ROI
of signing hand can be directly obtained with a special-
purpose signing hand detector, the error in detector it-
self can have negative impact on the recognition accuracy.
Such impact is prominent in the “wild” case where images
are much more noisier and high variance exists in signing
hands. Using a large region can avoid the loss of infor-
mation in the preprocessing step. Though an off-the-shelf
face detector is leveraged in both setups, the detector is not
trained with any manually face annotations in our dataset.
Compared to signing hand with higher variability, detect-
ing face is more robust and large training dataset is more
accessible.

Though loss of information can be caused under specific
scenarios in Face-ROI setup, the high performance shows
the assumption that face and signing hand are spatially close
to each other is quite reasonble in the specific domain of fin-
gerspelling. The whole frame setup consists of even less su-
pervision compared to Face ROI. Only the size of detected
face bounding box is used for training and no cropping is
involved in pre-processing step. The relative worse perfor-
mance compared to Face ROI is due to the complexity of
our image data. In cases of multiple moving objects in one
same image, the zooming-in process can fail.

6.2. Analysis

Our approach comprises of attention model, iterative
zooming, model ensemble and language model. To see how
those factors contribute to the performance we did an ab-
latiion study and results are show in table 2.

Face-ROI Whole
Attn only 33.4 14.2

+ Iter zoom 44.8 42.3
+ Ensemble 45.0 43.0

+ lm 46.2 44.1
Table 2. How different factors contribute to final performance (on
dev)

Effect of iterative zooming The process of iterative
zooming is important to ensure the high performance, as
can also be seen from table 2. In both setups, raw inputs
are only a coarse-grained image where hand only consists
of a small portion. Figure 8 shows how accuracy and input
image changes in different zooming iterations. Though no
supervision regarding hand is used for training, the location
of signing hand is implicitly learned by the model through
the attention mechanism. The accuracy is proportional to
the scale of hands in the input image.

As the input image is zoomed in, the resolution of hand
increases. In addition, the gradual shrinkage of input im-
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Figure 7. Alignment between letter labels and image frames as well as the attended region in each frame. revise as discussed in greg’s
group meeting. –KL

Figure 8. How accuracy and input image change in each iteration.
The red curve corresponds to the sequence of zooming ratios ob-
tained by beam search. the bottom panel doesn’t have results with
candidate ratios. also, label each point on the red curve with the
zooming ratio. –KL

age also removes the background generally being noise
and irrelevant to the recognition. To see how this removal
factor contributes to the performance, we compared the
accuracy of iterative zooming with zooming ratio series

Figure 9. Comparison of accuracy between zooming-in and image
resizing. Size of hands are same in same iteration.

(0.9, 0.8, 0.7) and our attention model with input image en-
larged with those ratios respectively (see figure ??). Un-
der same ratio, the zooming approach outperforms model
trained with enlarged input though the resolution of hands
in two inputs are same. This shows the benefits of noise
removal brought by the zooming process.

Effects of model ensemble, language model Model en-
semble and rescoring with a language model bring addi-
tional improvements according to table 2. Model ensem-
bling can mitigate the problem of over-zooming. Hand scale
is not always consistent across different input sequences,
which can be caused by the error in face detection or the
irregular ratio between face and hand, As we use one fixed
zooming ratio for every sequence in one iteration, parts of
signing hand can be removed for certain images. Compared
to the last iteration, input images of preceding iterations are
more complete despite its lower resolution. Besides, in each
iteration model is trained with images of a certain scale.
Ensembling can make the model less sensitive to the scale
change at test time.

In terms of language model, we train an LSTM with 200
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hidden units with the inhouse training data. The dev set
perplexity of our language model is 17.3. Rescoring with
language model improves the performance by a small mar-
gin (≈ 1%), which mainly because fingerspelling is used for
words without sign form and does not follow the common
distribution of English words.

6.3. Training with MTurk data

inhouse test MTurk test
[24], Hand 53.6 53.4
Ours, face 58.0 58.4

Table 3. Comparison of letter accuracies (%) with training data
augmented by MTurk training set. Hand: signing hand as input.
Face: an enlarged region surrounding face bounding box as input

All previous results are trained with inhouse training set.
Those fingerspelling annotations have gone through care-
fully proofreading. Compared to the above training set, the
annotations of MTurk data is much more noisy and there
exists potential domain discrepency between this dataset
and inhouse test set. However, the data size is 4 times
larger than the inhouse training set. To validate whether
those large amount of noisy data is useful for training fin-
gerspelling recognizer, we merged both training set and test
on inhouse test set. Both annotations are kept in MTurk
training data. The training data amounts to # with only #
from clean inhouse data. We follow the face-ROI setup de-
cribed above as better accuracy is achieved under this setup.
As can be seen from results in table 3, using the MTurk data
significantly improves the performance. The gain is partly
attributed to the increasing size of training set. Besides,
keeping both annotations performs naturally as data aug-
mentation, which further increases accuracy of the model.

7. conclusion
In this paper we present a new model for fingerspelling

recognition based on attention mechanism and an iterative
approach to zoom into ROI of a larger input image. We
show the signing hand is gradually located with attention
map and thus input with higher resolution can be used to
train the model. Without using any hand annotations our
approach outperforms the recognition model based on hand
detection. Besides, training with large number of crowd-
souring fingerspelling data further improves the recognition
accuracy to a large extent.
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